> Услуги по сварке > Основы сварки

 

О компании
Аргонная сварка
История сварки
Основы сварки
Плазменная сварка
Вращатели
Технологии сварки
Трансформаторы сварочные
 

Основы сварки

Деформации и напряжения при сварке
Физические основы сварки
Классификация методов оценки технологической прочности
Контактная стыковая сварка
Основные операции сварочного производства
Промышленное применение точечной и шовной сварки
Пути повышения технологической прочности сварных соединений
Шовная контактная сварка
Классификация способов сварки
Свариваемость металлов и сплавов
Сварка в инертных газах и азоте
Технологические процессы
Термический цикл при сварке
Точечная контактная сварка
Требования к сварным конструкциям при точечной и шовной сварке
Сварка в углекислом газе
Управление сварочным производством





Физические основы сварки

Сваркой называется процесс получения неразъёмного соединения отдельных частей из твёрдых материалов за счёт междуатомных сил сцепления как с применением нагрева, так и без него.

Сварка в промышленности особенно широко применяется для соединения металлов, но могут свариваться и многие другие материалы: стёкла, пластмассы, смолы, некоторые горные породы и т. д. В настоящей статье рассматривается только сварка металлов.

Силы сцепления, связывающие в одно целое элементарные частицы, из которых состоят твёрдые или жидкие тела, могут быть объяснены взаимодействием электронных оболочек атомов, составляющих тело. Для осуществления сварки, т. е. соединения твёрдых металлических частей в одно целое, необходимо привести в действие силы сцепления. Для этого прежде всего нужно достаточно сблизить атомы соединяемых частей на расстояние порядка атомного радиуса, а затем активизировать силы сцепления, т. е. заставить взаимодействовать электронные оболочки соединяемых частиц.

По общим законам термодинамики частицы взаимодействуют так, что в конечном счёте уменьшают свободную энергию системы. К процессам, уменьшающим свободную энергию системы, относятся, например, распределение атомов в определённом правильном порядке пространственной кристаллической решётки, которая обладает известной прочностью. Для деформирования решётки необходимо затратить определённую работу, т. е. подвести к твёрдому кристаллическому телу достаточное количество энергии. Деформированная кристаллическая решётка при подходящих условиях возвращается к нормальному состоянию, уменьшая свободную энергию системы и возвращая работу, затраченную на её деформирование. Во время перестройки деформированной кристаллической решётки частицы приходят во взаимодействие, вызывая срастание в одно целое соединяемых металлических частей.

К процессам, идущим самопроизвольно, с уменьшением свободной энергии системы, относятся, например, растворение и диффузия, которые часто играют основную роль в процессе сварки. Важным фактором увеличения свободной энергии системы является нагрев свариваемых тел. С повышением температуры сначала происходит уменьшение прочности твёрдого тела, ослабляются упругие свойства, растёт способность к пластическим деформациям, а затем происходит плавление металла. При дальнейшем повышении температуры металл переходит в газообразное состояние. Способность объёмов вещества к объединению в одно целое меняется с температурой, возрастая с её повышением. Любые газы, приведённые в соприкосновение и находящиеся в любых соотношениях, самопроизвольно образуют смесь, однородную по всему объёму, с наиболее вероятным равномерным распределением различных газовых молекул по всему объёму. В жидком состоянии способность к диффузия частиц уже сильно ограничена: существуют многочисленные примеры взаимно нерастворимых жидкостей и жидкостей с ограниченной взаимной растворимостью. Все расплавленные металлы являются достаточно однородными жидкостями и обладают хоть и очень ограниченной, но достаточной для осуществления сварки взаимной растворимостью.

Нагрев металла облегчает выполнение процесса сварки и применяется в широких размерах и разнообразнейших формах в сварочной технике, поэтому в обычном представлении сварка неразрывно связана с нагревом металла до высоких температур его плавления или перехода в пластическое состояние. Однако нагрев не является необходимым для осуществления процесса сварки и применяется из соображений практического удобства. Принципиально сварка возможна при низких температурах и в некоторых случаях осуществляется в промышленных масштабах. Срастание частиц металла в монолитное твёрдое тело при низких температурах наблюдается достаточно часто, так, например, при комнатной температуре формируются плотные и прочные массы металла при электролитическом его осаждении из водных растворов.

Нанося гальваническим путём осадок металла на соединяемые части, можно их соединить в одно целое и принимать осуществляемый таким образом процесс за сварку. Плотные прочные осадки металлов могут быть получены иногда и посредством химических реакций восстановления металла из его соединений, протекающих при низких температурах. При комнатной температуре возможно превращение металлических порошков в монолитный металл приложением значительного давления. За счёт пластической деформации осуществляется холодная сварка многих металлов при комнатной температуре,  находящая  промышленное  применение.









 

Плазменная сварка

Мощный аппарат плазменной сварки TETRIX PLASMA 350 AC/DC
Аппараты для плазменной сваркиМощный аппарат плазменной сварки TETRIX PLASMA 350 AC/DCАппараты для плазменной..
Инновационный аппарат микроплазменной сварки MICROPLASMA 50
Аппараты для плазменной сваркиИнновационный аппарат микроплазменной сварки MICROPLASMA 50ОсобенностиИнновационные..
Мощный аппарат плазменной сварки TETRIX PLASMA 400
Аппараты для плазменной сваркиМощный аппарат плазменной сварки TETRIX PLASMA 400Аппараты для плазменной..
Аппарат микроплазменной сварки MICROPLASMA 20
Аппараты для плазменной сваркиАппарат микроплазменной сварки MICROPLASMA 20ОсобенностиИнновационные аппараты..
Инновационный аппарат микроплазменной сварки MICROPLASMA 120
Аппараты для плазменной сваркиИнновационный аппарат микроплазменной сварки MICROPLASMA 120ОсобенностиИнновационные..


Ваше мнение!